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Abstract 

Measurements of NO2 were collected using Active-Differential Optical Absorption Spectroscopy 

(DOAS). An intercomparison between DOAS and chemiluminescence was completed. Data sets 

presenting the intercomparison between the two methods are presented for February 22-23, 2016, 

February 26-27 2016, March 4-5 2016 and March 21-22 2016. The intercomparisons are 

accompanied by meteorology factors wind speed and delta T as well as concentrations of O3 for 

one stable night and one unstable night. The data sets illustrated that the DOAS instrument 

measuring concentration of NO2 over a long path length does in fact provide an accurate 

representation of the concentration of NO2 at single point measurements. There were slight 

deviations between the two instruments that could primarily be accounted for by spatial averaging 

and meteorology effects. Chemical factors were also observed to deviate DOAS measurements 

from chemiluminescence, however this is seen more often during unstable nights when other NOy 

such as HONO, N2O5, NO3 and HNO3 interfere with the chemiluminescence instrument.  
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1. Introduction 
 

1.1 Summary of earth’s atmosphere  
 

Understanding the atmosphere and its constituents has great significance to protecting physical 

and biological life on earth. Earth only encompasses a fraction of the atmosphere. The earth’s 

atmosphere is composed of a thin layer of many trace gases, some of which include, NO2, SO2, 

NO3, CO and HONO. (Yilmaz, 2012). It is vital to human health to understand the sources and 

reactions of these trace gases. Earth’s atmosphere contains 5 major layers that include the 

following from highest to lowest: exosphere, thermosphere, mesosphere, stratosphere and 

troposphere.  

The troposphere extends vertically 12 km up from the surface of the earth (Barry, 1971) . 

Most major air pollutants are in the troposphere; measurements of trace gases in this thesis pertain 

to this region of the atmosphere. A major factor that dictates the structure of the atmosphere is its 

temperature profile. The troposphere is capped by a temperature inversion at the tropopause, which 

consists of a warm layer residing on a cooler layer(Barry, 1971). This is titled a temperature 

inversion because the warmer air is located underneath the cooler air so often times the 

temperature declines at increasing altitude because heat is transferred often from earth’s surface. 

The area closest to the surface of the earth is known as the planetary boundary layer, PBL(Wojtal, 

2013). A schematic of the diurnal variations and dynamics of the PBL is shown below:  
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pollutants. These originate from chemical reactions transforming one reactant into another. Ozone 

is a classic example of a secondary pollutant since there are no known primary sources.   

 

1.2 Chemistry of nitrogen in the atmosphere 

Nitrogen species are categorized as either NOx or NOy species. NOx species are the sum of 

NO and NO2. These two gases are constantly interconverting in the presence of light and are 

therefore classified in one group. NOy species include nitrogen species in the atmosphere such as 

HONO, HNO3, N2O5, NO3, etc. species are abundant throughout the lower atmosphere and as a 

result they heavily impact the chemistry of the atmosphere (Platt and Stutz, 2008). They originate 

primarily from anthropogenic combustion emissions from traffic and industrial combustion 

sources, which are located at the earth’s surface. N2 reacts with O2 in the air to form NO and NO2 

gas.  

N2 + O2  2NO.                       (R.1) 

N2 + 2O2  2NO2
.                    (R.2) 

Under photolysis, NO2 can then transform to NO at wavelengths lower than 420nm.  
 

NO2 + hv  NO + O(3P)           (R.3) 
 
 
O(3P) is converted to ozone, O3, through its reaction with O2 
 
 

O(3P) + O2  O3     (R.4) 

NO2 is then formed through the rapid reaction between O3 and NO2.  

NO. + O3  NO2
. + O2     (R.5) 

Through the reaction of NO2 and O3 in the atmosphere at night, NO3 is formed. This reaction is 

temperature independent and is only seen when temperature rises above 0°C (Platt and Stutz, 



2008). NO3 is detected between 580-670nm due to its absorption in the red region. NO3 has a 

lifetime of 5 seconds during the day and under photolysis NO3 dissipates into the following 

(patryk wayne). At night the lifetime of NO3 is typically 1-3 minutes (McLaren et al., 2010):  

NO3 + hv  NO2
. + O(3P)           (R.6) 

 NO. + O2                (R.7) 

Quantifying concentrations of NO2 and NO3 allow for the further analysis of N2O5, which has yet 

to be measured directly on its own. However, significant amounts of NO3 are needed to estimate 

the concentration of N2O5. N2O5 is stabilized at colder temperatures (patryk).  

 

NO3
. + NO2

. N2O5     (R.8) 

N2O5 is also significant because it is involved in the removal process of nitrogen species from the 

atmosphere. It is hydrolyzed to form HNO3 under both heterogeneous and possibly homogenous 

channels. HNO3 is removed from the atmosphere through wet and dry deposition. Hydrolysis 

under heterogeneous channel is presented below:   

N2O5 + H2O(p)  2HNO3 (p.g)     (R.9) 

Hydrolysis under homogenous channel is presented below:  

N2O5 + H2O(g)  2HNO3 (g)     (R.10) 

 

1.3 Differential optical absorption spectroscopy 

In order to quantify the concentration of trace gases in the atmosphere, differential optical 

absorption spectroscopy (DOAS) is employed. It allows for the unambiguous identification of 

trace causes by measuring the change in light intensity that occurs in the atmosphere as a result of 

these gases. DOAS is non-invasive which renders this method useful for detecting concentrations 



of reactive trace gases. DOAS ignores smooth broadband extinction features while measuring the 

narrowband absorptions. Some examples of smooth broadband extinction features include 

Rayleigh scattering and aerosol scattering.  

DOAS techniques can further be divided into passive and active DOAS techniques. Passive 

DOAS utilizes natural light sources like sunlight, moonlight and even stars. Active DOAS 

techniques on the other hand use artificial light sources. Active DOAS is effective in measuring 

the concentration of trace gases in the lower troposphere. The work presented utilized Active 

DOAS, which consists of a telescope transmitting light from an artificial light source over a known 

path length.  

1.4 Theory of differential optical absorption spectroscopy 

The principle of operation of DOAS is founded on the Beer-Lambert’s law (Plane and 

Smith, 1995): 

I(λ)=I0(λ)e-σ(λ)Lc      (E.1) 

where I0 (λ) is the wavelength dependent intensity, I (λ, L) is the remaining intensity, L is the light 

path length in the material and σ(λ) is the wavelength absorption cross section of the molecule.  

The optical density, D, of a given species is given by:  

 

D=ln ୍బሺ஛ሻ

୍ሺ஛ሻ
ൌ σሺλሻLc      (E.2) 

The optical density is the attenuation in light intensity as a result of the medium it encompasses. 

Rearranging this equation gives the concentration of trace gases:  

C=
ୈ

஢ሺ஛ሻ୐
ൌ ln	ሺ୍బ

ሺ஛ሻ

୍ሺ஛ሻ
ሻሺσሺλሻLሻିଵ        (E.3) 

When quantifying concentrations of trace gases, it is important to account for the presence 

of stray light as a result of using an open path. Rayleigh and Mie scattering are sources of stray 



light that must be accounted for. Mie scattering occurs as a result of aerosol particles in the 

atmosphere. Rayleigh scattering arises from light travelling though the air, giving rise to photon 

scattering. Rayleigh scatting is inversely proportional to the fourth power of the wavelength.  To 

account for Rayleigh scattering, the Rayleigh extinction coefficient, ߳ோሺߣሻ,	must be presented: 

߳ோሺߣሻ ൌ  ሻ݊௔௜௥           (E.4)ߣோሺߪ

where nair is the air mass factor 2.45 x 1019 molecules cm-3 at 20° and 1 atm and σR(λ) is 4.4 x 10-16 

cm2nm4.  

ሻߣோሺߪ ൌ  ସ     (E.5)ିߣோைߪ

The Mie extinction coefficient, ߳ெሺߣሻ, is defined as:  

߳ெሺߣሻ=߳ெைିߣ௡      (E.6) 

Taking Mie scattering and Rayleigh scattering into account extends the Beer Lambert equation to 

the following: 

I(λ)=I0(λ)eL(-σ(λ)c + εR(λ) + εM(λ))      (E.7) 

This equation can further be expanded to account for the various trace gases present in the 

atmosphere:  

I(λ)=I0(λ)eL(-Σσ
i
(λ)c

i
 + εR(λ) + εM(λ))       (E.8) 

where i describes the ith absorbing species.  

In order to determine the light intensity in the absence of absorbing species, the absorption of cross 

section of the given gas must be determined which is separated into two components:  

σi(λ)=σi,0(λ) + σi
’(λ)        (E.9) 

where σi,0(λ) is the slowly varying broadband component with regards to wavelength. σi
’(λ) is the 

rapidly varying narrowband component with regards to wavelength.  

Combining the above 2 equations results in:  



I(λ)=I0(λ)e-L(Σσ’
i
(λ)c

i
) e-L(Σ

i0
(λ)c

i
 + ε

R
(λ) + ε

M
(λ)) A(λ)         (E.10) 

Where A (λ) is the attenuation factor describing the broadband transmission of the optical system 

that is dependent on wavelength.  

The differential optical density, D’ can be defined as:  

D’= log
୍ᇱబሺ஛ሻ

୍ሺ஛ሻ
=LΣ(σ’i(λ)ci)        (E.11) 

and the concentration of the absorbent i is defined as:  

Ci=
ୈᇱ

ఙᇱ౟ሺ஛ሻ୐
       (E.12) 

Using the equation above plus the long equation to measure the intensity of light together measure 

the concentration of trace gases in the atmosphere.  

 

Purpose of project: 

The objective of this thesis is to determine how accurate long path measurements of NO2 

mixing ratios by the DOAS instrument are to point measurements taken by the chemiluminescence 

instrument. The goal is to determine the difference between the two methods mathematically so 

that NO2 mixing ratios can be accurately identified.    
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scenario could then be specified. First, the fitting range specific to the gas under study must be set. 

A fitting range of 560-585nm is used for NO2 analysis. H2O and O4 cross sections are included in 

this scenario because they show characteristic absorption features that must be accounted for 

within the range selected. The range is selected in a featureless region in the lamp spectra. The 

logarithm of the sample spectra is then taken and a 3rd polynomial order is merged into the fit. A 

2nd polynomial order is used to account for Rayleigh scattering, Mie scattering and instrumental 

response features that could potentially affect the accuracy of the fit.  

 2.3 Chemiluminescence measurements 

Point measurements of NO2 were collected using a chemiluminescence instrument located 

on top of the Petrie Science and Engineering building at York University. The principle of 

operation of the chemiluminescence instrument is based on the emission of light from chemical 

reactions. Emission, like fluorescence, originates from singlet energy levels; they only differ in 

that the source of emission is from chemical reactions rather than absorption of photons. The 

instrument consists of an O3 generator, a reaction chamber, a pump and a photomultiplier tube 

detector. Only direct measurements of NO can be taken by chemiluminescence. However, the 

instrument generates O3 that can react with other nitrogen species, in the reaction chamber, like 

NO2 to form NO that is then detected by the PMT. NO2 mixing ratios were collected every minute.  

 

 

 

 

 

 



3. Results and discussion 

Following the description of the NO2 fitting procedure, the mixing ratios of NO2 measured 

by the DOAS instrument and the chemiluminescence instrument are presented below along with 

the concentrations of O3 for one stable night and one unstable night. The results will be analyzed 

using meteorology (wind speed and delta T). The intercomparison of the two instruments will be 

analyzed and discussed.  

 
3.1 NO2 fitting procedure  

 
The concentration of NO2 was obtained as explained in the experimental section using 

DOAS 2000 instrument. NO2 was fit in the range 560-585nm using a red spectrometer. However, 

this is not the common range used for NO2 collections. NO2 gas is commonly fit in the region of 

422-450nm (Halla et al, 2011). A red spectrometer collecting the range 500-800nm allows for the 

detection of both NO2 and NO3, together these trace gases can be used to also quantify the 

concentration of N2O5.  

 The fitting scenario for NO2 included two lamp spectra; one collected from the same 

evening and the second collected the following morning. Evidence showed NO2 was fit more 

effectively in the presence of two lamps due to the true lamp spectra being bracketed within the 

two collected spectra. The fit scenario also included cross sections of NO2 (Vandaele 1997), H2O 

(Coheur 2002) and O4 (Hermans 1999). The calibrated data of the mercury lamp, helium neon 

laser, offset and dark current noise were also incorporated into the fit. In order to obtain the mixing 

ratio of NO2, the slant column density provided by DOASIS must be divided by the path length 

and air mass factor first.  

The following figure represents the fit scenario created on March 21, 2016.  
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DOAS instrument does give relatively accurate measurements of NO2 in the atmosphere. Some 

deviations in the r2 values are a result of time differences between the DOAS and 

chemiluminescence instrument. The DOAS instrument was set up to a computer that often lagged 

in time resulting in systematic errors.  

The stability of the night can be inferred through meteorology analysis. Stable nights are 

defined as those with high NO2 concentrations, low wind speeds and high delta T. Stable nights 

occur when the air mass cools faster than its surroundings. The air becomes denser and stratified. 

As a result, vertical mixing in the air decreases. Unstable nights are defined as those with low 

concentrations of NO2, high wind speeds and low delta T. Unstable nights occur when air is cooled 

slower than surroundings. 

3.3 NO2 measurements by DOAS and Chemiluminescence during stable nights 
 

The following data presented in figures 3.3.1 to 3.3.10 represent concentrations of NO2 

during one night in February and two nights in March.   

 
Figure 3.3.1: A plot of mixing ratio vs. time of the concentration of NO2 measured by both DOAS 
and chemiluminescence on the night of February 22-23 2016. 
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Figure 3.3.2: A plot of windspeed and delta T over time during the night of February 22-23 2016. 

 
Figure 3.3.3:Comparison between NO2 and O3 concentrations in ppb during February 22-23 2016. 
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Figure 3.3.4: Intercomparison between DOAS and chemiluminescence instrument on February 22-
23 2016.     
 

On this particular night, concentrations of NO2 rose above 25 ppb indicating the occurrence 

of a stable night. Looking at table 3.2.2, the average wind speed on this night was 1.718 m/s and 

the average delta T was 0.31°C. Concentrations of O3 are expected to drop when NO2 

concentrations increase and vice versa due to the following series of chemical equations:  

NO2 + hv NO + O(3P) 

O(3P) + O2  O3 

Figure 3.3.3 confirms the interconversion between O3 and NO2. Although not shown, a temporal 

plot of Ox(O3 + NO2) shows a roughly constant value all night, emphasizing the role of the 

“titration” reaction n a stable air mass.  The rapid decrease in NO2 concentrations occurs at 

approximately 2:00 AM and is due to a change in air mass. At this time, an increase in the wind 

speed is seen along with a decline in delta T leading to the notion that a  change in meteorology is 

accompanied with rapid changes in NO2 concentrations. Between 3:00PM and 9:00PM, NO2 

mixing ratios are slightly higher by DOAS versus chemiluminescence with numerous possible 
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between DOAS and chemiluminescence methods. On this particular night, this reason cannot 

explain the entire difference seen since the presence of large NO2 spikes result from changes in the 

stability of air mass. N2O5 is produced through the chemical reaction between NO2 and NO3, 

which only occur during unstable night as the formation of NO3 is temperature dependent. 

Therefore, chemical factors can likely be ruled out as the major reason for disagreement between 

the two measurement techniques at this time.   

 The DOAS instrument measures averages of NO2 mixing ratios over a long path. Spatial 

and temporal averaging must be considered for this difference in concentration. Spatial averaging 

is defined as the mathematical mean of values over multiple points in space whereas temporal 

averaging is defined as the mathematical mean of values over a period of time. A rapid increase in 

the concentration of NO2 would result in underestimation of the peak gas concentrations by 

DOAS. Chemiluminescence measures the concentration of NO2 at a single point whereas DOAS 

takes the average over a long path. It is expected that DOAS would not measure rapid spikes in 

NO2 that can occur due to local sources.  
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Figure 3.3.6: A plot of mixing ratio vs. time of the concentration of NO2 measured by both DOAS 
and chemiluminescence on the night of March 4-5 2016. 
 
 

 
Figure 3.3.7: A plot of windspeed and delta T over time during the night of March 4-5 2016. 
 
 

 
Figure 3.3.8: Intercomparison between DOAS and chemiluminescence instrument on March 4-5 
2016.    
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Figure 3.3.9: A plot of mixing ratio vs. time of the concentration of NO2 measured by both DOAS 
and chemiluminescence on the night of March 21-22 2016. 
 
 

 
Figure 3.3.10: A plot of windspeed and delta T over time during the night of March 21-22 2016. 

‐10

0

10

20

30

40

50

2:24:00	AM 8:24:00	AM 2:24:00	PM 8:24:00	PM 2:24:00	AM

M
ix
in
g	
ra
ti
o	
(p
p
b
)

Time DOAS

CHEMILUMINESENCE

‐1

0

1

2

3

4

5

6

2:24:00	PM 8:24:00	PM 2:24:00	AM 8:24:00	AM 2:24:00	PM

W
in
d
	s
p
ee
d
/D
el
ta
	T

Time
Wind	speed	(m/s)

Delta	T	(°C)



 
Figure 3.3.11: Intercomparison between DOAS and chemiluminescence instrument on March 21-
22 2016.    
 
 
 
The DOAS and chemiluminescence instruments differ slightly more during these two nights 

(figure 3.3.5 to 3.3.10) than in the first night on February 22 2016 (figure 3.3.1-3.3.4). These 

nights are slightly less stable than February 22, 2016. The average wind speed is lower and the 

delta T is higher during the two nights in March than in February. Variations in the stability of the 

night could account for differences in the two methods. It is also observed that the biggest 

differences between the two instruments occur when there are rapid increases or decreases in the 

concentration of NO2, which can be explained by temporal and spatial averages.  

 
3.4 NO2 measurements by DOAS and Chemiluminescence during unstable nights 
 
The following data (figure 3.4.1 and 3.4.4) represents measurements of NO2 using a DOAS 

instrument and a chemiluminescence instrument and their correlation. The meteorology on this 

night is presented in figure 3.4.2 and the ozone and NO2 comparison is shown in figure 3.4.3. 
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Figure 3.4.1: A plot of mixing ratio vs. time of the concentration of NO2 measured by both DOAS 
and chemiluminescence on the night of March February 26-27 2016. 
 
 

 
Figure 3.4.2: A plot of windspeed and delta T over time during the night of February 26-27 2016. 
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Figure 3.4.3: Comparison between NO2 and O3 concentrations in ppb during February 26-27 2016. 
 

 
Figure 3.4.4: Intercomparison between DOAS and chemiluminescence instrument on February 26-
27 2016. 
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concentrations of NO2 increase or decrease rapidly. It has been observed that changes in stability 

of the night correspond to differences between the two experimental methods.  

Generally speaking, the DOAS instrument is relatively accurate to the chemiluminescence during 

this unstable night. It is observed again that the concentration of NO2 measured by the DOAS than 

chemiluminescence is higher before sunset and lower in the absence of sunlight. This can be 

explained by the presence of solar radiation that the DOAS instrument collects.  

(Insert fit during the day) 

Because this is an unstable night, N2O5 is likely present and can account for some of the difference 

in concentration between the two methods. However, N2O5 is only present at night and a constant 

variation between the two methods is observed. Chemical factors explain the larger variations 

when NO2 concentrations are spiked. A likely explanation for the differences between the methods 

is experimental. Because the DOAS instrument produced concentration of NO2 with little noise, 

there was likely an error in the fit that resulted in constant underestimations in the concentration of 

NO2 throughout the night. 

 3.5 Error Analysis  

The major source of error in the fit procedure is obtaining the real spectra of the lamp. 

Collecting the lamp spectra using the transmitted light from the telescope showed very poor 

results. A solution to this problem was to collect lamp spectra using the light reflected from the 

retro-reflector. However, this still resulted in poor NO2 fits. Good fits were only obtained when a 

lamp spectra was collected the following morning indicating that true lamp lied somewhere 

between the evening lamp and the morning lamp spectra. Another source of error in the fitting 

procedure was the assumption made when fitting the He/Ne laser at 632.8nm to a Gaussian curve 

that is only an approximation.  



 Systematic errors were also present during the experiments. The computer that was used to 

collect spectra was delayed in time and as a result did not give the exact representation of the 

atmosphere at that point in time. To resolve this issue, the time of collection by DOAS was 

adjusted to match the time of collection by the chemiluminescence instrument manually.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4. Conclusion and future work 

It is evident that there is a large correlation between the DOAS instrument and the 

chemiluminescence instrument used to measure the mixing ratio of NO2 in the atmosphere. 

Although, DOAS illustrated slight deviations at times, it gave a roughly accurate portrait of the 

atmospheric conditions of NO2 occurring at night. The averaging done by DOAS heavily 

influences deviations between the two measurements. Although chemical and meteorological 

factors do play a role in deviating NO2 mixing ratios in DOAS from the chemiluminescence, the 

primary influence is temporal and spatial averaging when NO2 mixing ratios increase or decrease 

rapidly. The advantage of measuring over a long path length, which was done by DOAS, is for 

applications where large temporal and spatial scale averages are needed, such as intercomparisons 

with models. Selected models include grids that measure areas of long distances. For this reason, 

point measurements would not work as effectively as long path measurements. Another reason 

DOAS would be rendered useful is comparison of atmospheric concentrations with satellite 

measurements. Further work that can be done to enhance the accuracy of the DOAS instrument 

includes finding the exact concentration DOAS deviates from chemiluminescence. This can be 

done by calculating the concentration of other nitrogen species that form NO2 as well as averaging 

deviations caused by temporal and spatial averaging as well as meteorology effects.  

 

 

 

 

 

 



Appendix 

Differential cross sections used:  
 
 
Cross-section Author, Date 
NO2 Vandaele, 1997 
H2O Coheur, 2002 
O4 Hermans, 1999 
 
Calculations:  
 
Converting slant column density given by DOASIS to NO2 concentrations 
 
1. The slant column density is first divided by the total path length. 
 

ଵ.଼଴ହ௫ଵ଴భళ

ଶଶ଴଴଴	௖௠
 =8.205x1012 

 
 
2. This value must then be corrected for the air mass factor by diving it by 2.49x1019 

 

଼.ଶ଴ହ௫ଵ଴భమ

ଶ.ସଽ௫ଵ଴భళ
= 3.29 x10-5 

 
3. This value is then converted into a concentration by multiplying it with 106 to obtain the ppb 
value. 
 

=3.29x10-5 x 106=32.95 ppb 
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